On convex envelopes and underestimators for bivariate functions
نویسندگان
چکیده
In this paper we discuss convex underestimators for bivariate functions. We first present a method for deriving convex envelopes over the simplest two-dimensional polytopes, i.e., triangles. Next, we propose a technique to compute the value at some point of the convex envelope over a general two-dimensional polytope, together with a supporting hyperplane of the convex envelope at that point. Noting that the envelopes might be of quite complicated form and their computation not easy, we move later on to the discussion of a method, based on the solution of a semidefinite program, to derive convex underestimators (not necessarily convex envelopes) of simple enough form for bivariate quadratic functions over general two-dimensional polytopes.
منابع مشابه
On convex relaxations for quadratically constrained quadratic programming
We consider convex relaxations for the problem of minimizing a (possibly nonconvex) quadratic objective subject to linear and (possibly nonconvex) quadratic constraints. Let F denote the feasible region for the linear constraints. We first show that replacing the quadratic objective and constraint functions with their convex lower envelopes on F is dominated by an alternative methodology based ...
متن کاملConvex envelopes of bivariate functions through the solution of KKT systems
In this paper we exploit a slight variant of a result previously proved in [11] to define a procedure which delivers the convex envelope of some bivariate functions over polytopes. The procedure is based on the solution of a KKT system and simplifies the derivation of the convex envelope with respect to previously proposed techniques. The procedure is applied to derive the convex envelope of th...
متن کاملConvex extensions and envelopes of lower semi-continuous functions
We define a convex extension of a lower-semicontinuous function to be a convex function that is identical to the given function over a pre-specified subset of its domain. Convex extensions are not necessarily constructible or unique. We identify conditions under which a convex extension can be constructed. When multiple convex extensions exist, we characterize the tightest convex extension in a...
متن کاملOn the functional form of convex underestimators for twice continuously differentiable functions
The optimal functional form of convex underestimators for general twice continuously differentiable functions is of major importance in deterministic global optimization. In this paper, we provide new theoretical results that address the classes of optimal functional forms for the convex underestimators. These are derived based on the properties of shift-invariance and sign-invariance.
متن کاملA New Class of Improved Convex Underestimators for Twice Continuously Differentiable Constrained NLPs
We present a new class of convex underestimators for arbitrarily nonconvex and twice continuously differentiable functions. The underestimators are derived by augmenting the original nonconvex function by a nonlinear relaxation function. The relaxation function is a separable convex function, that involves the sum of univariate parametric exponential functions. An efficient procedure that finds...
متن کامل